What we do
Astronomy has large amounts of complex data from observations and simulations, which are traditionally used in isolation. This is where we come in.
- We build a global model of the sky from all available observations.
- We optimize the full experimental design process from instrumentation to survey strategy and data analysis.
Friends
Anthony Harness
Princeton
Former members
- Reese Owen (senior thesis)
- Ben Horowitz (postdoc)
- Yunona Iwasaki (junior thesis)
- Satyue Lacayo (junior thesis)
- Andrew Chen (independent work)
- Remy Joseph (postdoc)
- Tianshu Wang (grad student)
- Lucas Makinen (senior thesis)
- Charles Minns (senior thesis)
- Charles Zhao (junior thesis)
Selected Papers
-
Score-matching neural networks for improved multi-band source separation
Sampson, M.; Melchior, P.; Ward, C.; Birmingham, S.
arXiv:2401.07313 -
AESTRA: Deep Learning for Precise Radial Velocity Estimation in the Presence of Stellar Activity
Liang, Y.; Winn, J.; Melchior, P.
The Astronomical Journal, 2024, 167, 23 -
PopSED: Population-level Inference for Galaxy Properties from Broadband Photometry with Neural Density Estimation
Li, J.; Melchior, P.; Hahn, C.; Huang, S.
The Astronomical Journal, 2024, 167, 16 -
Autoencoding Galaxy Spectra II: Redshift Invariance and Outlier Detection
Liang, Y.; Melchior, P.; Lu, S.; Goulding, A.; Ward, C.
The Astronomical Journal, 2023, 166, 75 -
Autoencoding Galaxy Spectra I: Architecture
Melchior, P.; Liang, Y.; Hahn, C.; Goulding, A.
The Astronomical Journal, 2023, 166, 74 -
Lightweight starshade position sensing with convolutional neural networks and simulation-based inference
Chen, A.; Harness, A.; Melchior, P.
Journal of Astronomical Telescopes, Instruments, and Systems, 2023, 9, 025002 -
Plausible Adversarial Attacks on Direct Parameter Inference Models in Astrophysics
Horowitz, B.; Melchior, P.
arXiv:2211.14788 -
Mangrove: Learning Galaxy Properties from Merger Trees
Jespersen, C.; Cranmer, M.; Melchior, P.; Ho, S.; Somerville, R.; Gabrielpillai, A.
The Astrophysical Journal, 2022, 941, 7 -
Accelerated Bayesian SED Modeling using Amortized Neural Posterior Estimation
Hahn, C.; Melchior, P.
The Astrophysical Journal, 2022, 938, 11 -
Graph Neural Network-based Resource Allocation Strategies for Multi-Object Spectroscopy
Wang, T.; Melchior, P.
Machine Learning: Science and Technology, 2022, 3, 015023 -
The challenge of blending in large sky surveys
Melchior, P.; Joseph, R.; Sanchez, J.; MacCrann, N.; Gruen, D.
Nature Reviews Physics, 2021, 3, 712 -
Joint survey processing: combined resampling and convolution for galaxy modelling and deblending
Joseph, R.; Melchior, P.; Moolekamp, F.
arXiv:2107.06984 -
Unsupervised Resource Allocation with Graph Neural Networks
Cranmer, M.; Melchior, P.; Nord, B.
PMLR, 2021, 148, 272-284 -
deep21: a Deep Learning Method for 21cm Foreground Removal
Makinen, T L; Lancaster, L.; Villaescusa-Navarro, F.; Melchior, P. and 3 co-authors
JCAP, 2021, 081 -
Hybrid Physical-Deep Learning Model for Astronomical Inverse Problems
Lanusse, F.; Melchior, P.; Moolekamp, F.
arXiv:1912.03980 -
Proximal Adam: Robust Adaptive Update Scheme for Constrained Optimization
Melchior, P.; Joseph, R.; Moolekamp, F.
arXiv:1910.10094 -
Filling the gaps: Gaussian mixture models from noisy, truncated or incomplete samples
Melchior, P.; Goulding, A. D.
A & C, 2018, 25, 183 -
SCARLET: Source separation in multi-band images by Constrained Matrix Factorization
Melchior, P. and 6 co-authors
A & C, 2018, 24, 129
Image credit: Dr. Hideaki Fujiwara - Subaru Telescope, NAOJ